



Poster 11

#### End-to-End validation of the acquisition and reconstruction pipeline for 3D non-cartesian fMRI.

**Pierre-Antoine Comby** 

Supervisors: Philippe Ciuciu & Alexandre Vignaud













# Functional MRI in a (tiny) nutshell...



## A Solution to the Reproducibility Crisis for high-res fMRI





- Develop and compare new Acquisition/Reconstruction Methods
  - Esp. for 3D Non-Cartesian Setup
- Reproducibility Issues
  - Ensure control of *all* inputs (Brain included)
    - Simulation setup needed

cea

|                      |                                      | alidatio       | on         |                 |                                 |            |                          |          |
|----------------------|--------------------------------------|----------------|------------|-----------------|---------------------------------|------------|--------------------------|----------|
|                      | Simulator Name                       | Licence        | API        | Sim.<br>Domain  | Required External<br>Data       | Interface  | Reconstr.                |          |
|                      | TVB<br>(Sanz Leon et al., 2013)      | GPL-3.0        | ę          | Image           |                                 | GUI/script | N/A                      | ~        |
| <b>MRI</b> Simulator | Jemris<br>(Stöcker et al., 2010)     | GPL-2.0        | <b>*</b> © | Bloch           |                                 | GUI        | ISMRMD<br>raw data       | eque.    |
|                      | ODIN<br>(Jochimsen et al., 2006)     | GPL-2.0        | 9          | Bloch           | Tissue Maps,<br>Sequence        | c++/GUI    | FFT <b>%</b>             | or order |
|                      | MRILab<br>(Liu et al., 2017)         | BSD-2          | 40         | Bloch           | Preset Macros                   | GUI        | FFT<br>Non-<br>Cartesian | Pro      |
|                      | Bloch-Solver<br>(Kose & Kose, 2017)  | Proprietary    | <b>?</b>   | Bloch           | Tissue Maps,                    | script     | FFT                      |          |
| fMRI Simulator       | POSSUM<br>(Drobnjak et al., 2006)    | FSL            | <b>A</b> © | Bloch           | Tissue Maps<br>Sequence, Events | CLI        | FFT                      |          |
|                      | Neurolib<br>(Cakan et al., 2023)     | MIT            | 4          | Image           | Connectivity<br>Matrices        | script     | N/A                      | W .eDC   |
|                      | SimTB<br>(Erhardt et al., 2012)      | Open<br>Source |            | Image           | Spatial Maps,<br>Events         | GUI        | N/A O                    | 11,002   |
|                      | NeuroRSim<br>(Welvaert et al., 2011) | GPL-2.0        | R          | Image           |                                 | script     | N/A                      | <b>`</b> |
|                      | fmriSim<br>(Ellis et al., 2020)      | Apache-<br>2.0 | <b>?</b>   | Image           |                                 | script     | N/A                      | Oui      |
|                      | SNAKE-fMRI                           | MIT            | ę          | Kspace<br>Image | Configuration files             | script/CLI | Any (4D<br>methods)      | 3        |

### From simulated BOLD signals to K-Space ... and back



# **Simulation Scenario: Tuning Acquisition & Reconstruction**



Aliased Activation

cea

Spatial resolution: 3mm **Temporal Resolution: 700ms** AF=4 TR=50, TE=30, Tobs=25

Image Quality is not a proxy for good statistical performances.







**Best Combination:** Y **Dynamic Acquisition + Refined Reconstruction.** 

Static



#### Thank you for your attention !







Thttps://github.com/paquiteau/snake-fmri ★

https://arxiv.org/abs/2404.08282v1

\$ pip install snake-fmri
\$ snkf-main --config-name="scenario1"
# Using Hydra, parameters can be modified and run over a grid of parameter.
\$ snkf-main --config-name="scenario2" -m ++reconstructors.sequential.restart\_strategy=cold,warm,refine
To reproduce data of the previous slide

#### Thank you for your attention